Volkswagen 01M Transmission. Manual — part 100

"Observed" K1 and K2 Pressures, at operating temperature with a new valve body installed.
Initial engagement N to D; K1 pressure at idle is 56-60 psi.
Under acceleration in D; K1 pressure is 75-80 psi.
Before the 1-2 shift in D; K1 pressure raises to 140-150 psi.
When shift is completed; K1 pressure settles at 80-90 psi in 2nd gear.
Before the 2-3 shift in D; K1 pressure raises to 95-100 during 2-3 shift and settles at 70 psi in 3rd.
Before the 3-4 shift in D; K1 pressure raises to 140 psi, K2 pressure still under 4 psi. Then K1 pressure begins to drop
and K2 pressure begins to rise with both settling at 85-90 psi in 4th gear.
During 4-5 shift in D; K2 pressure raises to 190-200 psi, K1 pressure raises to 155-160 psi, then K1 drops to 40 psi,
(While K2 is 170), then drops gradually to less than 2 psi, and K2 settles at 140 psi in 5th gear.
During 5-6 shift in D; K2 pressure drops to 110-120 in 6th gear.

30

Copyright © 2010 ATSG

AUTOMATIC TRANSMISSION SERVICE GROUP

Technical Service Information

"Observed" Pressure Specifications

Selector

Lever

"D" Idle

"D" Idle (Tiptronic)

"D" Stall*

"D" Stall (Tiptronic)*

"R" Idle

"R" Stall*

* "D" & "R" Stall, at approx 2300 rpm, the PCM cuts fuel to engine.

K1 & B2

K1

K3

B2

K1 & B2

K1 & B2

K1 & B2

K3 & B2

K3 & B2

54-60

0.9

104-106

23-28

146-160

187-190

0.9

53-55

80-85

80-85

270-275

270-275

Other "Observed" Pressures

Lube Pressure 4-8 psi, 8-10 psi in 6th gear

TCC Release 80-90 psi in Reverse

Taps

Required

Specifications in psi

LINE PRESSURE SPECIFICATIONS

Figure 34

G

S

F

AU

FA

AU

FA

V

A

W

G

V

A

W

G

GZ

G

2

30

80

3

03

C

T

16

2

02

8

9

G

30

0

5

0

0

3

H

5

44

-

2

73

0

1

- 1

4

5

0

1

-

T

68

0

C

02

3

1

2

O

Z

0

0

H

3

5

0

3

9

0

G

1

0

0

4

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

ll

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

ll

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

ll

l l

l

l

Forward

(300 lb Gauge)

Forward Tiptronic

& Reverse

(300 lb Gauge)

Reverse

(300 lb Gauge)

Many Thanks To;

Jesse Zacharias

For Providing Us
With These Specs

To Share

Many Thanks To;

Jesse Zacharias

For Providing Us
With These Specs

To Share

WWW.ALL-TRANS.BY

31

Copyright © 2010 ATSG

AUTOMATIC TRANSMISSION SERVICE GROUP

Technical Service Information

There are two distinctly different style lubrication
systems used in TF-60SN (09G/09M) transaxles. As
a result, there are 2 different transaxle cases, 2
different converter housings and 2 different valve
body to case spacer plates.

Some models use an ATF cooler that is mounted on
the converter housing and integrated into the engine
cooling circuit, as shown in Figure 35. With this
arrangement, cooler fluid is sent directly into the
cooler and returned to the lube circuit.
Engine coolant is piped to the integral cooler and
returned to the cooling system with a constant
circulation.

Some models use an ATF cooler that is mounted in a
remote location, also shown in Figure 35, and cooler
fluid must be sent via traditional cooler lines to the
cooler. This requires entry and exit points located in
the transaxle case, and their locations are shown in
Figure 35.

G

S

F

AU

FA

U

A

FA

A

VW

G

A

VW

G

28

0

G

Z

03

G

3

3

2

2

0

68

0

T

1

C

9

0

0

H

0

3

35

G

0

5

4

3-

0

7

4

2

0

-

1

-

4

1

5

1

3

1

0

T

2

8

C2

0

6

O

Z

H

30

03

0

5

0

G

9

0

1

4

0

G

S

F

AU

FA

U

A

FA

A

W

G

V

A

VW

G

2

0

G

80

3

GZ

3

3

2

2

0

0

68

C

T

1

9

0

0

3

0

H

G

0

35

5

4 -

34

02

7

0

-

1

-

4

1

5

1

1

3

T

2

8

0

2

0

6

C

O

Z

H

30

3

0

0

5

0

G

9

0

1

4

0

To Remote

Cooler

From Remote

Cooler

Engine Coolant To

Integral Cooler

Engine Coolant From

Integral Cooler

Integral Cooler

Remote Cooler

Example

COOLER INFORMATION

COOLER INFORMATION

Integral Cooler

Remote Mounted Cooler

Caution: If a mis-match of any of these parts
occur, lubrication fluid is lost causing immediate
failure of the transaxle drive train.
Pay very close attention to the passage ID section
that follows, as it provides a way to identify these
parts, to avoid disaster.

Figure 35

Fluid Fill

Pipe

Note: All Transaxles

Are Not Equipped With

Fluid Fill Device

WWW.ALL-TRANS.BY

Figure 36

CASE PASSAGE IDENTIFICATION (VALVE BODY SIDE) WITH "INTEGRAL COOLER"

CASE PASSAGE IDENTIFICATION (VALVE BODY SIDE) WITH "REMOTE COOLER"

Pump Outlet

(Line)

Pump Outlet

(Line)

Front Planet

Lube (1)

Cooler Return

To VB (8)

Thru Pump

Case Identification

For Transaxle With

Cooler Attached To

Converter Cover, As

This Passage Is Not

In The Remote Cooler

Transaxle Case

Case Identification

For Transaxle With

Remote Cooler, As

This Passage Is Not

In the Integral Cooler

Transaxle Case

B1

B1

K1

K1

K3

K3

Front Planet

Lube (1)

Remote Cooler

Return To VB (2)

Cooler/Lube

Filter

K2

B2

To TCC Release

Pressure Tap

To K1 Pressure Tap

Lube

Pump Inlet

(Suction)

Pump Inlet

(Suction)

Blocked By Pump

Blocked By Pump

TCC Release

TCC Release

TCC Apply

TCC Apply

To Remote

Cooler From VB (1)

B2

K2

To K1 Pressure Tap

Lube

To Cooler

From VB (1)

Differential Lube

From VB (1)

Differential Lube

From VB (1)

To TCC Release

Pressure Tap

32

Copyright © 2010 ATSG

AUTOMATIC TRANSMISSION SERVICE GROUP

Technical Service Information

WWW.ALL-TRANS.BY

Figure 37

CONVERTER COVER PASSAGE IDENTIFICATION WITH "INTEGRAL COOLER"

CONVERTER COVER PASSAGE IDENTIFICATION WITH "REMOTE COOLER"

Converter Cover

(Case Side)

0

240

40

5

. 7

2433 a

20

0

To Remote Cooler

From Pump (9)

From Remote Cooler

Return To VB (9)

Pipe To Remote Cooler

From VB (4)

To Remote Cooler

From VB (3)

Differential Lube

From VB (3)

To Remote

Cooler (5)

Remote Cooler

(Example)

Converter Cover

(Case Side)

Integral

Cooler

Cooler Return Pipe

To VB (2)

Thru Pump

Cooler Return

To VB (1)

Thru Pump

Cooler Return

To VB (3)

Thru Pump

Cooler In

From VB (5)

Pipe To Cooler

From VB (4)

To Cooler

From VB (3)

Differential Lube

From VB (3)

33

Copyright © 2010 ATSG

AUTOMATIC TRANSMISSION SERVICE GROUP

Technical Service Information

WWW.ALL-TRANS.BY

Была ли эта страница вам полезна?
Да!Нет
3 посетителя считают эту страницу полезной.
Большое спасибо!
Ваше мнение очень важно для нас.

Нет комментариевНе стесняйтесь поделиться с нами вашим ценным мнением.

Текст

Политика конфиденциальности